\(\int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx\) [305]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 297 \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {2 \left (21 a^2 A b+63 A b^3-6 a^3 B+82 a b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}+\frac {2 (7 A b-2 a B) (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d} \]

[Out]

2/35*(7*A*b-2*B*a)*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/b/d+2/7*B*(a+b*cos(d*x+c))^(5/2)*sin(d*x+c)/b/d+2/105*(21
*A*a*b-6*B*a^2+25*B*b^2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d+2/105*(21*A*a^2*b+63*A*b^3-6*B*a^3+82*B*a*b^2)*
(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos
(d*x+c))^(1/2)/b^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/105*(a^2-b^2)*(21*A*a*b-6*B*a^2+25*B*b^2)*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b
))^(1/2)/b^2/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3047, 3102, 2832, 2831, 2742, 2740, 2734, 2732} \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {2 \left (-6 a^2 B+21 a A b+25 b^2 B\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 b d}-\frac {2 \left (a^2-b^2\right ) \left (-6 a^2 B+21 a A b+25 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (-6 a^3 B+21 a^2 A b+82 a b^2 B+63 A b^3\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (7 A b-2 a B) \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{35 b d}+\frac {2 B \sin (c+d x) (a+b \cos (c+d x))^{5/2}}{7 b d} \]

[In]

Int[Cos[c + d*x]*(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]),x]

[Out]

(2*(21*a^2*A*b + 63*A*b^3 - 6*a^3*B + 82*a*b^2*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b
)])/(105*b^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (2*(a^2 - b^2)*(21*a*A*b - 6*a^2*B + 25*b^2*B)*Sqrt[(a +
b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(105*b^2*d*Sqrt[a + b*Cos[c + d*x]]) + (2*(21*
a*A*b - 6*a^2*B + 25*b^2*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(105*b*d) + (2*(7*A*b - 2*a*B)*(a + b*Cos[c
 + d*x])^(3/2)*Sin[c + d*x])/(35*b*d) + (2*B*(a + b*Cos[c + d*x])^(5/2)*Sin[c + d*x])/(7*b*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \int (a+b \cos (c+d x))^{3/2} \left (A \cos (c+d x)+B \cos ^2(c+d x)\right ) \, dx \\ & = \frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {2 \int (a+b \cos (c+d x))^{3/2} \left (\frac {5 b B}{2}+\frac {1}{2} (7 A b-2 a B) \cos (c+d x)\right ) \, dx}{7 b} \\ & = \frac {2 (7 A b-2 a B) (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {4 \int \sqrt {a+b \cos (c+d x)} \left (\frac {1}{4} b (21 A b+19 a B)+\frac {1}{4} \left (21 a A b-6 a^2 B+25 b^2 B\right ) \cos (c+d x)\right ) \, dx}{35 b} \\ & = \frac {2 \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}+\frac {2 (7 A b-2 a B) (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {8 \int \frac {\frac {1}{8} b \left (84 a A b+51 a^2 B+25 b^2 B\right )+\frac {1}{8} \left (21 a^2 A b+63 A b^3-6 a^3 B+82 a b^2 B\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{105 b} \\ & = \frac {2 \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}+\frac {2 (7 A b-2 a B) (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}-\frac {\left (\left (a^2-b^2\right ) \left (21 a A b-6 a^2 B+25 b^2 B\right )\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{105 b^2}+\frac {\left (21 a^2 A b+63 A b^3-6 a^3 B+82 a b^2 B\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{105 b^2} \\ & = \frac {2 \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}+\frac {2 (7 A b-2 a B) (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d}+\frac {\left (\left (21 a^2 A b+63 A b^3-6 a^3 B+82 a b^2 B\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{105 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (\left (a^2-b^2\right ) \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{105 b^2 \sqrt {a+b \cos (c+d x)}} \\ & = \frac {2 \left (21 a^2 A b+63 A b^3-6 a^3 B+82 a b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{105 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (21 a A b-6 a^2 B+25 b^2 B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 b d}+\frac {2 (7 A b-2 a B) (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{35 b d}+\frac {2 B (a+b \cos (c+d x))^{5/2} \sin (c+d x)}{7 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.09 (sec) , antiderivative size = 233, normalized size of antiderivative = 0.78 \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {4 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left (b^2 \left (84 a A b+51 a^2 B+25 b^2 B\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+\left (21 a^2 A b+63 A b^3-6 a^3 B+82 a b^2 B\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )\right )\right )+b (a+b \cos (c+d x)) \left (\left (168 a A b+12 a^2 B+115 b^2 B\right ) \sin (c+d x)+3 b (2 (7 A b+8 a B) \sin (2 (c+d x))+5 b B \sin (3 (c+d x)))\right )}{210 b^2 d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]*(a + b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]),x]

[Out]

(4*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*(b^2*(84*a*A*b + 51*a^2*B + 25*b^2*B)*EllipticF[(c + d*x)/2, (2*b)/(a +
b)] + (21*a^2*A*b + 63*A*b^3 - 6*a^3*B + 82*a*b^2*B)*((a + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*Ellipt
icF[(c + d*x)/2, (2*b)/(a + b)])) + b*(a + b*Cos[c + d*x])*((168*a*A*b + 12*a^2*B + 115*b^2*B)*Sin[c + d*x] +
3*b*(2*(7*A*b + 8*a*B)*Sin[2*(c + d*x)] + 5*b*B*Sin[3*(c + d*x)])))/(210*b^2*d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1304\) vs. \(2(331)=662\).

Time = 15.98 (sec) , antiderivative size = 1305, normalized size of antiderivative = 4.39

method result size
default \(\text {Expression too large to display}\) \(1305\)
parts \(\text {Expression too large to display}\) \(1492\)

[In]

int(cos(d*x+c)*(a+cos(d*x+c)*b)^(3/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c
)^8*b^4+(-168*A*b^4-312*B*a*b^3-360*B*b^4)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(252*A*a*b^3+168*A*b^4+108*
B*a^2*b^2+312*B*a*b^3+280*B*b^4)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-84*A*a^2*b^2-126*A*a*b^3-42*A*b^4-6
*B*a^3*b-54*B*a^2*b^2-128*B*a*b^3-80*B*b^4)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-21*A*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a
^3*b+21*a*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3+21*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(
a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b-21*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-
b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2+63*A*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b
/(a-b))^(1/2))*a*b^3-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^4+6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2
*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4-31*B*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b^2
+25*B*b^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d
*x+1/2*c),(-2*b/(a-b))^(1/2))-6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(
1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^4+6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2
*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3*b+82*B*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2
))*a^2*b^2-82*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^3)/b^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/si
n(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 562, normalized size of antiderivative = 1.89 \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\frac {\sqrt {2} {\left (-12 i \, B a^{4} + 42 i \, A a^{3} b + 11 i \, B a^{2} b^{2} - 126 i \, A a b^{3} - 75 i \, B b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {2} {\left (12 i \, B a^{4} - 42 i \, A a^{3} b - 11 i \, B a^{2} b^{2} + 126 i \, A a b^{3} + 75 i \, B b^{4}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 3 \, \sqrt {2} {\left (6 i \, B a^{3} b - 21 i \, A a^{2} b^{2} - 82 i \, B a b^{3} - 63 i \, A b^{4}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 3 \, \sqrt {2} {\left (-6 i \, B a^{3} b + 21 i \, A a^{2} b^{2} + 82 i \, B a b^{3} + 63 i \, A b^{4}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 \, {\left (15 \, B b^{4} \cos \left (d x + c\right )^{2} + 3 \, B a^{2} b^{2} + 42 \, A a b^{3} + 25 \, B b^{4} + 3 \, {\left (8 \, B a b^{3} + 7 \, A b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{315 \, b^{3} d} \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/315*(sqrt(2)*(-12*I*B*a^4 + 42*I*A*a^3*b + 11*I*B*a^2*b^2 - 126*I*A*a*b^3 - 75*I*B*b^4)*sqrt(b)*weierstrassP
Inverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a
)/b) + sqrt(2)*(12*I*B*a^4 - 42*I*A*a^3*b - 11*I*B*a^2*b^2 + 126*I*A*a*b^3 + 75*I*B*b^4)*sqrt(b)*weierstrassPI
nverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)
/b) - 3*sqrt(2)*(6*I*B*a^3*b - 21*I*A*a^2*b^2 - 82*I*B*a*b^3 - 63*I*A*b^4)*sqrt(b)*weierstrassZeta(4/3*(4*a^2
- 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2
)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b)) - 3*sqrt(2)*(-6*I*B*a^3*b + 21*I*A*a^2*b^2 + 82*I
*B*a*b^3 + 63*I*A*b^4)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstra
ssPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) +
2*a)/b)) + 6*(15*B*b^4*cos(d*x + c)^2 + 3*B*a^2*b^2 + 42*A*a*b^3 + 25*B*b^4 + 3*(8*B*a*b^3 + 7*A*b^4)*cos(d*x
+ c))*sqrt(b*cos(d*x + c) + a)*sin(d*x + c))/(b^3*d)

Sympy [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*cos(d*x + c), x)

Giac [F]

\[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)^(3/2)*cos(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \, dx=\int \cos \left (c+d\,x\right )\,\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)*(A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)*(A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(3/2), x)